ex-5: implement the code for plotting σ_MC vs calls

move all the functions to lib.c and lib.h; add this two librearies to makefile;
make plot.py more easy to use for passing to one mode to the other (show or
save figure); create fit_plot and create the figure 5-fit.pdf.
This commit is contained in:
Giù Marcer 2020-06-01 15:46:25 +02:00 committed by rnhmjoj
parent 340c7a2690
commit 093faf3fe8
7 changed files with 216 additions and 55 deletions

86
ex-5/lib.c Normal file
View File

@ -0,0 +1,86 @@
#include <gsl/gsl_fit.h>
#include <stdio.h>
#include <math.h>
#include "lib.h"
// Wrapper for the gsl_function structure
//
double function (double * x, size_t dim, void * params)
{
return exp(x[0]);
}
///////////////////////////////////////////////////////////////////////////////
// Results printer.
//
void results (size_t calls, double result, double error, double chi)
{
if (calls != 0)
{
printf ("%6.0e | ", (double)calls);
}
printf ("%5f | ", result);
printf ("%5f | ", error);
if (chi != 0)
{
printf ("%5f", chi);
}
}
///////////////////////////////////////////////////////////////////////////////
// Perform a fit in order to compare the data with the expected function:
//
// y = a⋅x^b → ln(y) = ln(a) + b⋅ln(x) → Y = A + B⋅X
//
// with:
//
// A = ln(a) → a = e^A
// B = b → b = B
//
// using a linear regression. For b, the results is hence compared with the
// expected one:
//
// b_exp = - 0.5
//
void fit (struct bag full_bag, double* p,
double* a, double* a_err,
double* b, double* b_err)
{
// Expected value.
//
double b_exp = -0.5;
// Parse arguments.
//
double size = full_bag.size;
double* x = full_bag.pokets.x;
double* y = full_bag.pokets.y;
for (size_t i = 0; i < size; i++)
{
x[i] = log(x[i]);
y[i] = log(y[i]);
}
// Do fit.
//
double A, B, A_err, B_err, AB_cov, sum2;
gsl_fit_linear(x, 1, y, 1, size, &A, &B, &A_err, &AB_cov, &B_err, &sum2);
// Parse results.
//
A_err = sqrt(A_err);
B_err = sqrt(B_err);
*a = exp(A);
*b = B;
*a_err = *a * A_err;
*b_err = B_err;
// Check compatibility with expected values.
//
double t = fabs(*b - b_exp)/ *b_err;
*p = 1 - erf(t/sqrt(2));
}

35
ex-5/lib.h Normal file
View File

@ -0,0 +1,35 @@
#pragma once
// Subtruct for the results storage.
//
struct poket
{
double * x; // Vector with the numbers of function calls.
double * y; // Vector with Plain MC error estimates.
};
// Struct for the results storage.
//
struct bag
{
struct poket pokets; // Values.
size_t size; // Quantity of values.
};
///////////////////////////////////////////////////////////////////////////////
// Wrapper for the gsl_function structure.
//
double function (double * x, size_t dim, void * params);
// Results printer.
//
void results (size_t calls, double result, double error, double chi);
// Do a linear minimization fitting the model y = a⋅x^b. The p-value of the
// compatibility test of b with the expected value -0.5 is returned in p.
//
void fit (struct bag full_bag, double* p,
double* a, double* a_err,
double* b, double* b_err);

View File

@ -2,32 +2,9 @@
#include <gsl/gsl_monte_miser.h> #include <gsl/gsl_monte_miser.h>
#include <gsl/gsl_monte_vegas.h> #include <gsl/gsl_monte_vegas.h>
#include <gsl/gsl_monte.h> #include <gsl/gsl_monte.h>
#include <stdio.h>
#include <math.h> #include <math.h>
#include "lib.h"
// exp() wrapper for the gsl_function structure
//
double function (double * x, size_t dim, void * params)
{
return exp(x[0]);
}
// Function which prints out the results when called.
//
void results (size_t calls, double result, double error, double chi)
{
if (calls != 0)
{
printf ("%6.0e | ", (double)calls);
}
printf ("%5f | ", result);
printf ("%5f | ", error);
if (chi != 0)
{
printf ("%5f", chi);
}
}
int main(int argc, char** argv) int main(int argc, char** argv)
@ -35,10 +12,24 @@ int main(int argc, char** argv)
// Some useful variables. // Some useful variables.
// //
size_t dims = 1; // Integral dimension size_t dims = 1; // Integral dimension
double lower[1] = {0}; // Integration lower limit double lower[1] = {0}; // Integration range lower limit
double upper[1] = {1}; // Integration upper limit double upper[1] = {1}; // Integration range upper limit
size_t calls = 50; // Initial number of function calls double integral, error; // Result and error
double integral, error;
// An integral is estimated with a number c_i of function calls.
// Different number of function calls are tested.
//
size_t c_0 = 50; // Initial number of function calls
size_t c_f = 50000000; // Final number of function calls
size_t factor = 10; // c_(i+1) = c_i * factor
size_t size = round(1 + log(c_f/c_0)/log(factor)); // Number of integrations
// A fit will be performed. This struct is needed to accomplish it.
//
struct bag full_bag;
full_bag.pokets.x = calloc(size, sizeof(double));
full_bag.pokets.y = calloc(size, sizeof(double));
full_bag.size = size;
// Initialize an RNG. // Initialize an RNG.
// //
@ -52,23 +43,18 @@ int main(int argc, char** argv)
expo.dim = 1; expo.dim = 1;
expo.params = NULL; expo.params = NULL;
// Print the results table header // Print the results table header.
//
printf(" Calls | Plain | Error | MISER |" printf(" Calls | Plain | Error | MISER |"
" Error | VEGAS | Error | χ²\n"); " Error | VEGAS | Error | χ²\n");
printf(" ------|----------|----------|----------|" printf(" ------|----------|----------|----------|"
"----------|----------|----------|---------\n"); "----------|----------|----------|---------\n");
// Compute the integral for the following number of function calls: // Compute the integral with the three MC methods: plain MC, MISER and VEGAS.
// 50
// 500
// 5'000
// 50'000
// 500'000
// 5'000'000
// 50'000'000
// with the three MC methods: plain MC, MISER and VEGAS.
// //
while (calls <= 5000000) size_t calls = c_0;
size_t i = 0;
while (calls <= c_f)
{ {
// Plain MC // Plain MC
gsl_monte_plain_state *sMC = gsl_monte_plain_alloc (dims); gsl_monte_plain_state *sMC = gsl_monte_plain_alloc (dims);
@ -77,6 +63,11 @@ int main(int argc, char** argv)
gsl_monte_plain_free(sMC); gsl_monte_plain_free(sMC);
results(calls, integral, error, 0); results(calls, integral, error, 0);
// Update the struct for the fit.
//
full_bag.pokets.x[i] = calls;
full_bag.pokets.y[i++] = error;
// MISER // MISER
gsl_monte_miser_state *sMI = gsl_monte_miser_alloc (dims); gsl_monte_miser_state *sMI = gsl_monte_miser_alloc (dims);
gsl_monte_miser_integrate (&expo, lower, upper, dims, calls, gsl_monte_miser_integrate (&expo, lower, upper, dims, calls,
@ -106,13 +97,28 @@ int main(int argc, char** argv)
double chi = sVE->chisq; double chi = sVE->chisq;
results(0, integral, error, chi); results(0, integral, error, chi);
// Update function calls // Update function calls
//
printf ("\n"); printf ("\n");
calls = calls*10; calls = calls*factor;
} }
// Do a fit of the Plain MC errors.
//
double p, a, a_err, b, b_err;
fit(full_bag, &p, &a, &a_err, &b, &b_err);
// Print the fit results.
//
fprintf (stderr, "\n## Fit results:\n\n");
fprintf (stderr, "a = %.5f\t", a);
fprintf (stderr, "δa = %.5f\n", a_err);
fprintf (stderr, "b = %.5f\t", b);
fprintf (stderr, "δb = %.5f\n", b_err);
fprintf (stderr, "p-value = %.5f\n", p);
// Free memory. // Free memory.
//
gsl_rng_free(r); gsl_rng_free(r);
return EXIT_SUCCESS; return EXIT_SUCCESS;

View File

@ -4,26 +4,29 @@ import matplotlib.pyplot as plt
import numpy as np import numpy as np
import sys import sys
table = np.loadtxt(sys.stdin, unpack=True, skiprows=2, delimiter='|') table = np.loadtxt(sys.stdin, unpack=True, skiprows=2, delimiter='|')
calls, I_MC, σ_MC, I_MI, σ_MI, I_VE, σ_VE, chi = table calls, I_MC, σ_MC, I_MI, σ_MI, I_VE, σ_VE, chi = table
exact = 1.7182818285 exact = 1.7182818285
plt.rcParams['font.size'] = 17
plt.figure() plt.figure()
# plt.figure(figsize=(5, 3))
# plt.rcParams['font.size'] = 8
plt.title('Plain MC', loc='right') plt.title('Plain MC', loc='right')
plt.ylabel('$I^{oss}$') plt.ylabel('$I^{oss}$')
plt.xlabel('calls') plt.xlabel('calls')
plt.xscale('log') plt.xscale('log')
plt.axhline(y=exact, color='#c556ea', linestyle='-', plt.axhline(y=exact, color='#c556ea', linestyle='-', label='Exact value')
label='Exact value') plt.errorbar(calls, I_MC, linestyle='', marker='o', yerr=σ_MC,
plt.errorbar(calls, I_MC, linestyle='', marker='o', color='#92182b', label='Plain MC')
yerr=σ_MC, color='#92182b', label='Plain MC') plt.errorbar(calls, I_MI, linestyle='', marker='o', yerr=σ_MI,
plt.errorbar(calls, I_MI, linestyle='', marker='o', color='black', label='MISER')
yerr=σ_MI, color='black', label='MISER') plt.errorbar(calls, I_VE, linestyle='', marker='o', yerr=σ_VE,
plt.errorbar(calls, I_VE, linestyle='', marker='o', color='gray', label='VEGAS')
yerr=σ_VE, color='gray', label='VEGAS')
plt.legend() plt.legend()
# plt.tight_layout()
# plt.savefig('notes/images/5-test.pdf')
plt.show() plt.show()

31
ex-5/plots/fit_plot.py Executable file
View File

@ -0,0 +1,31 @@
#!/usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
import sys
table = np.loadtxt(sys.stdin, unpack=True, skiprows=2, delimiter='|')
calls, I_MC, σ_MC, I_MI, σ_MI, I_VE, σ_VE, chi = table
exact = 1.7182818285
plt.figure()
# plt.figure(figsize=(5, 3))
# plt.rcParams['font.size'] = 8
plt.title('Integral uncertainty', loc='right')
plt.ylabel('$\sigma_I$')
plt.xlabel('calls')
plt.xscale('log')
plt.yscale('log')
plt.plot(calls, σ_MC, linestyle='', marker='o',
color='#92182b', label='$\sigma_I$')
x = np.logspace(1, 8, 5)
a = 0.48734
b = -0.49938
plt.plot(x, a*(x**b), color='gray')
plt.tight_layout()
# plt.savefig('notes/images/5-fit.pdf')
plt.show()

View File

@ -27,7 +27,7 @@ ex-4/bin/main: ex-4/main.c ex-4/lib.c
$(CCOMPILE) $(CCOMPILE)
ex-5: ex-5/bin/main ex-5: ex-5/bin/main
ex-5/bin/%: ex-5/%.c ex-5/bin/%: ex-5/main.c ex-5/lib.c
$(CCOMPILE) $(CCOMPILE)
ex-6: ex-6/bin/main ex-6/bin/test ex-6: ex-6/bin/main ex-6/bin/test

BIN
notes/images/5-fit.pdf Normal file

Binary file not shown.