2020-05-13 01:16:45 +02:00
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
def plot(table, title='', log=False):
|
2020-05-21 18:47:44 +02:00
|
|
|
plt.figure(figsize=(5, 2))
|
|
|
|
plt.rcParams['font.size'] = 8
|
2020-05-13 01:16:45 +02:00
|
|
|
plt.suptitle(title)
|
|
|
|
|
2020-05-21 18:47:44 +02:00
|
|
|
plt.subplot(111)
|
2020-05-13 01:16:45 +02:00
|
|
|
if log:
|
|
|
|
plt.xscale('log')
|
2020-05-19 18:56:26 +02:00
|
|
|
plt.title('EMD' + ' '*10, loc='right')
|
2020-05-13 01:16:45 +02:00
|
|
|
|
|
|
|
plt.plot(table[0], table[1], color='#92182b')
|
|
|
|
plt.tick_params(axis='y', labelcolor='#92182b')
|
|
|
|
plt.ylabel('average', color='#92182b')
|
2020-05-19 18:56:26 +02:00
|
|
|
plt.ticklabel_format(style='sci', axis='y',
|
|
|
|
scilimits=(0, 0), useMathText=True)
|
2020-05-13 01:16:45 +02:00
|
|
|
|
|
|
|
twin = plt.twinx()
|
|
|
|
twin.plot(table[0], table[2], color='gray')
|
|
|
|
twin.tick_params(axis='y', labelcolor='gray')
|
|
|
|
twin.set_ylabel('standard deviation', color='gray')
|
2020-05-19 18:56:26 +02:00
|
|
|
twin.ticklabel_format(style='sci', axis='y',
|
|
|
|
scilimits=(0, 0), useMathText=True)
|
2020-05-13 01:16:45 +02:00
|
|
|
|
2020-05-21 18:47:44 +02:00
|
|
|
# plt.subplot(212)
|
|
|
|
# if log:
|
|
|
|
# plt.xscale('log')
|
|
|
|
# plt.title('skewness', loc='right')
|
|
|
|
# plt.xlabel('RL rounds')
|
|
|
|
# plt.plot(table[0], table[3], color='xkcd:gray')
|
2020-05-13 01:16:45 +02:00
|
|
|
|
2020-05-19 18:56:26 +02:00
|
|
|
plt.tight_layout()
|
|
|
|
|
2020-05-13 01:16:45 +02:00
|
|
|
|
2020-05-21 18:47:44 +02:00
|
|
|
table = np.loadtxt('ex-6/plots/emd-round-noise.txt')
|
2020-05-13 01:16:45 +02:00
|
|
|
|
2020-05-21 18:47:44 +02:00
|
|
|
# plot(table[:27].T, title='noiseless', log=True)
|
|
|
|
plot(table[27:47].T, title=r'noise at $\sigma_N = 0.005$')
|
|
|
|
plt.savefig('notes/images/6-rounds-noise-0.005.pdf')
|
|
|
|
plot(table[47:67].T, title=r'noise at $\sigma_N = 0.01$')
|
|
|
|
plt.savefig('notes/images/6-rounds-noise-0.01.pdf')
|
|
|
|
plot(table[67:].T, title=r'noise at $\sigma_N = 0.05$')
|
|
|
|
plt.savefig('notes/images/6-rounds-noise-0.05.pdf')
|