analistica/ex-4/lib.c

88 lines
1.8 KiB
C
Raw Normal View History

#include "lib.h"
// Minimization wrapper.
//
double chi2(double p_max, void* params)
{
// Pars parameters.
struct parameters p = *((struct parameters*) params);
struct bin* histo = p.histo;
size_t n = p.n;
double step = p.step;
// Compute χ².
double chi = 0;
double expecto = 0;
for (size_t i = 0; i < n; i++)
{
expecto = expected((i + 0.5) * step, p_max);
chi += pow(histo[i].sum - expecto, 2)/expecto;
};
return chi;
}
// Expected function.
//
double expected (double x, double p_max)
{
// When p_max < x, the argument under sqrt is negative. Return great number
// to lead away the minimization.
if (p_max < x)
{
double num = 500;
return num;
}
return x * log(p_max/x)/atan(sqrt(fabs(pow(p_max, 2)/pow(x,2) - 1)));
}
// First derivative of the expected function.
//
double exp1d (double x, double p_max)
{
// When p_max < x, the argument under sqrt is negative. Return great number
// to lead away the minimization.
if (p_max < x)
{
double num = 500;
return num;
}
double a = p_max;
double A = sqrt(fabs(pow(a, 2)/pow(x,2) - 1));
double B = atan(A);
double C = log(a/x);
return x/(a*B) - x*C/(a*A*pow(B, 2));
}
2020-06-01 15:45:10 +02:00
//
// Second derivative of the expected function.
//
double exp2d (double x, double p_max)
{
// When p_max < x, the argument under sqrt is negative. Return great number
// to lead away the minimization.
if (p_max < x)
{
double num = 500;
return num;
}
double a = p_max;
double a2 = pow(a, 2);
double A = sqrt(fabs(a2/pow(x,2) - 1));
double B = atan(A);
double C = log(a/x);
double D = 1 - a2/pow(x,2);
double E = -2/(a2*D*B);
double F = 1/(a2*A);
double G = 1/(pow(x, 2)*pow(A, 3));
double H = 1/a2 + 2/(a2 * A * B);
return x*((E + F + G) * C/B - H)/B;
}