2020-06-10 16:23:33 +02:00
|
|
|
|
# MC simulations
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
## In summary
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
-----------------------------------------------------
|
|
|
|
|
Landau Moyal
|
|
|
|
|
----------------- ----------------- -----------------
|
|
|
|
|
median $m_L\ex$ $m_M\ex (μ, σ)$
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
mode $\mu_L\ex$ $\mu_M\ex (μ)$
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
FWHM $w_L\ex$ $w_M\ex (σ)$
|
|
|
|
|
-----------------------------------------------------
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
## Moyal parameters
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
A $M(x)$ similar to $L(x)$ can be found by imposing:
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
\vspace{15pt}
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
- equal mode
|
|
|
|
|
$$
|
|
|
|
|
\mu_M\ex = \mu_L\ex \approx −0.22278298...
|
|
|
|
|
$$
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
- equal width
|
|
|
|
|
$$
|
|
|
|
|
w_M\ex = w_L\ex = \sigma \cdot a
|
|
|
|
|
$$
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
|
|
|
|
$$
|
2020-06-10 16:23:33 +02:00
|
|
|
|
\implies \sigma_M \approx 1.1191486...
|
2020-06-08 23:44:51 +02:00
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
## Moyal parameters
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
:::: {.columns}
|
|
|
|
|
::: {.column width=50%}
|
|
|
|
|
![](images/both-pdf-bef.pdf)
|
|
|
|
|
:::
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
::: {.column width=50%}
|
|
|
|
|
![](images/both-pdf-aft.pdf)
|
|
|
|
|
:::
|
|
|
|
|
::::
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
## Moyal parameters
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
This leads to more different medians:
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
\begin{align*}
|
|
|
|
|
m_M = 0.787... \thus &m_M = 0.658... \\
|
|
|
|
|
&m_L = 1.355...
|
|
|
|
|
\end{align*}
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
|
|
|
|
|
2020-06-11 18:30:30 +02:00
|
|
|
|
## Landau Sample
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-11 18:30:30 +02:00
|
|
|
|
Sample N random points following $L(x)$
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
$$
|
2020-06-11 18:30:30 +02:00
|
|
|
|
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
|
|
|
|
|
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
|
2020-06-10 16:23:33 +02:00
|
|
|
|
$$
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
2020-06-11 18:30:30 +02:00
|
|
|
|
gsl_ran_Landau(gsl_rng)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Moyal sample
|
|
|
|
|
|
|
|
|
|
Sample N random points following $M_{\mu \sigma}(x)$
|
2020-06-08 23:44:51 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
$$
|
2020-06-11 18:30:30 +02:00
|
|
|
|
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
|
|
|
|
|
\left[ - \frac{1}{2} \left(
|
|
|
|
|
\frac{x - \mu}{\sigma}
|
|
|
|
|
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
|
2020-06-10 16:23:33 +02:00
|
|
|
|
$$
|
2020-06-11 18:30:30 +02:00
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
|
|
|
|
reverse sampling
|
|
|
|
|
|
|
|
|
|
- sampling $y$ uniformly in [0, 1] $\hence x = Q_M(y)$
|
|
|
|
|
|
|
|
|
|
|