analistica/ex-2/fancy.c

90 lines
2.1 KiB
C
Raw Normal View History

2020-03-06 02:24:32 +01:00
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
// The Euler-Mascheroni constant is computed through the formula:
//
// γ = A(N)/B(N) - ln(N)
//
// with:
//
// A(N) = Σ_(k = 1)^(k_max) (N^k/k!) * H(k)
// B(N) = Σ_(k = 0)^(k_max) (N^k/k!)
// H(k) = Σ_(j = 1)^(k) (1/k)
//
// where N is computed from D as written below and k_max is the value
// at which there is no difference between two consecutive terms of
// the sum because of double precision.
//
// source: http://www.numberworld.org/y-cruncher/internals/formulas.html
// Partial harmonic sum h
double harmonic_sum(double n) {
double sum = 0;
for (double k = 1; k < n+1; k++) {
sum += 1/k;
}
return sum;
}
// A series
double a_series(int N) {
double sum = 0;
double prev = -1;
for (double k = 1; sum != prev; k++) {
prev = sum;
sum += pow(((pow(N, k))/(tgamma(k+1))), 2) * harmonic_sum(k);
}
return sum;
}
// B series
double b_series(int N){
double sum = 0;
double prev = -1;
for (double k = 0; sum != prev; k++) {
prev = sum;
sum += pow(((pow(N, k))/(tgamma(k+1))), 2);
}
return sum;
}
double c_series(int N) {
double sum = 0;
for (double k = 0; k < N; k++) {
sum += pow(tgamma(2*k + 1), 3)/(pow(tgamma(k + 1), 4) * pow(16.0*N, (int)2*k));
}
return sum/(4.0*N);
}
// Takes in input the number D of desired correct decimals
// Best result obtained with D = 15, N = 10
int main(int argc, char** argv) {
double exact =
0.57721566490153286060651209008240243104215933593992;
// If no argument is given is input, an error signal is displayed
// and the program quits
if (argc != 2) {
fprintf(stderr, "usage: %s D\n", argv[0]);
fprintf(stderr, "Computes γ up to D decimal places.\n");
return EXIT_FAILURE;
}
int N = floor(2.0 + 1.0/4 * log(10) * (double)atoi(argv[1]));
double A = a_series(N);
double B = b_series(N);
double C = c_series(N);
double gamma = A/B - C/(B*B) - log(N);
printf("N: %d\n", N);
printf("approx:\t%.30f\n", gamma);
printf("true:\t%.30f\n", exact);
printf("diff:\t%.30f\n", fabs(gamma - exact));
printf("\t 123456789 123456789 123456789\n");
return EXIT_SUCCESS;
}