analistica/ex-1/slides-plot.py

62 lines
1.6 KiB
Python
Raw Normal View History

#!/usr/bin/env python
from matplotlib import pyplot as plt
import numpy as np
import sys
def moyal(x, μ, σ):
N = (1)/(np.sqrt(2 * np.pi) * σ)
return N * np.exp(- 0.5 * ((x - μ)/σ + np.exp( - (x - μ)/σ)))
2020-06-07 00:01:01 +02:00
plt.figure()
# plt.figure(figsize=(3.5, 2.5))
# plt.rcParams['font.size'] = 8
# useful coordinates
# y_min = -0.0086 # y min axes
# y_max = 0.1895 # y max axes
# me = -0.22 # mode
# f_me = 0.1806 # f(mode)
# h_f_me = f_me/2 # falf f(mode)
# x_m = -1.5867 # x₋
# x_p = 2.4330 # x₊
# prepare plot
x, y = np.loadtxt(sys.stdin, unpack=True)
# plt.title('Landau distribution', loc='right')
# plt.xlim(-10, 10)
# plt.ylim(y_min, y_max)
# draw the lines
# plt.plot([-10, me], [f_me, f_me], color='gray')
# plt.plot([me, me], [f_me, y_min], color='gray')
# plt.plot([-10, x_p], [h_f_me, h_f_me], color='gray')
# plt.plot([x_m, x_m], [y_min, h_f_me], color='gray')
# plt.plot([x_p, x_p], [y_min, h_f_me], color='gray')
# draw the function
plt.plot(x, y, color='#92182b')
# draw the notes
# s = 0.012
# S = 0.2
# plt.annotate('$f(m_e)$', [-10 + S, f_me - s])
# plt.annotate('$f(m_e)/2$', [-10 + S, h_f_me - s])
# plt.annotate('$x_-$', [x_m + S, y_min + s/2])
# plt.annotate('$x_+$', [x_p + S, y_min + s/2])
# plt.annotate('$m_e$', [me + S, y_min + s/2])
# do Moyal plot
μ = -0.22278298
σ = 1.1191486
2020-06-07 00:01:01 +02:00
x = np.arange(-10, 30, 0.01)
plt.plot(x, moyal(x, μ, σ), color='gray')
# save figure
plt.tight_layout()
plt.show()
# plt.savefig('notes/images/1-notes.pdf')
# plt.savefig('slides/images/both-pdf.pdf', transparent=True)