analistica/ex-2/fast.c

227 lines
5.9 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gmp.h>
/* The Euler-Mascheroni constant is here computed to
* arbitrary precision using GMP floating point numbers
* with the formula:
*
* 0 < |γ - U(N)/V(N)| < πexp(-4N)
*
* with:
*
* U(N) = Σ_(k = 1)^+ (N^k/k!)² *(H(k) - log(N))
* V(N) = Σ_(k = 0)^+ (N^k/k!)²
* H(k) = Σ_(j = 1)^(k) (1/k), the k-th harmonic number
*
* If N = 2^p (to simplify the log) to get the result to D
* decimal digits we must have 2^(p+1) > D / log(π), which is
* satisfied by p = floor(log2(N log(10) + log(π))) - 1.
*
* The number of series terms needed to reduce the error, due to
* to less than 10^-D is α2^p where α is the solution of:
*
* α log(α) = 3 + α α = exp(W(3e) - 1) 4.97
*
* source: http://www.numberworld.org/y-cruncher/internals/formulas.html
*
*/
/* Approximation of the Lambert W(x) function at large values
* where x = log(2) 10^(D/2). The expression of x has been
* inlined and optimized to avoid overflowing on large D.
*
* Note: from x>10 this is an overestimate of W(x), which is
* good for the application below.
*
* source: "On the Lambert W function", Corless et al.
*/
double lambertW_large(size_t digits) {
double L1 = log(log(2.0)) + log(10.0)*(double)digits/2.0;
double L2 = log(L1);
return L1 - L2 + L2/L1 + (L2 - 2)/(2*L1*L1)
+ L2*(3*L2*L2*L2 - 22*L2*L2 + 36*L2 - 12)/(12*L1*L1*L1*L1);
}
/* `mpf_log2(z, D)`
* calculate log(2) to D decimal places
* using the series
*
* log(2) = Σ_{k=1}^+ 1/(k 2^k)
*
* The error of the n-th partial sum is
* estimated as
*
* Δn = 1/(n(n+2) 2^(n-1)).
*
* So to fix the first D decimal places
* we evaluate up to n terms such that
*
* Δn < 1/10^D
*
* Then take the average of the upper and
* lower bounds of the series, given by
*
* Sk + ak/(1 - ak+1/ak) < S < Sk + ak L/(1-L)
*
* where L = lim k ak+1/ak = 1/2.
*/
void mpf_log2(mpf_t rop, size_t digits) {
mpf_t sum, term;
mpf_inits(sum, term, NULL);
fprintf(stderr, "[mpf_log2] decimal digits: %ld\n", digits);
/* Compute the number of required terms
* A couple of extra digits are added for safety.
*/
size_t n = 2.0/log(2)*lambertW_large(digits+2);
fprintf(stderr, "[mpf_log2] series terms: %ld\n", n);
/* Compute the nth partial num */
for (size_t i=1; i<=n; i++) {
mpf_set_ui(term, 1);
mpf_mul_2exp(term, term, i);
mpf_mul_ui(term, term, i);
mpf_ui_div(term, 1, term);
mpf_add(sum, sum, term);
}
/* Compute upper/lower bounds */
mpf_t upp, low;
mpf_inits(upp, low, NULL);
// upp = sum + term
mpf_add(upp, sum, term);
// low = sum + term * n/(n+2)
mpf_mul_ui(low, term, n);
mpf_div_ui(low, low, n+2);
mpf_add(low, sum, low);
/* average the bounds */
mpf_add(sum, low, upp);
mpf_div_ui(sum, sum, 2);
/* Note: printf() rounds floating points to the number of digits
* in an implementation-dependent manner. To avoid printing
* (wrongly) rounded digits we increase the count by 1 and hide
* the last by overwriting with a space.
*/
size_t d = digits>50? 50 : digits;
gmp_fprintf(stderr, "[mpf_log2] upper bound: %.*Ff\b \n", d+3, upp);
gmp_fprintf(stderr, "[mpf_log2] lower bound: %.*Ff\b \n", d+3, low);
gmp_fprintf(stderr, "[mpf_log2] log(2)=%.*Ff\b \n", d+1, sum);
// return sum
mpf_set(rop, sum);
// free memory
mpf_clears(sum, term, NULL);
mpf_clears(upp, low, NULL);
}
/* `mpf_gamma(rop, digits)` computes γ to `digits` decimal places
* using the above described algorithm and set results to `rop`.
*/
void mpf_gamma(mpf_t rop, size_t digits) {
/* The number N=2^p is fixed by requiring that the error
* is smaller than the precision/digits required:
*
* π exp(-4N) < 10^(-D)
*
* The first power of 2 solving the constraint is
*
* p = floor(log2(N log(10) + log(π))) - 1
*/
unsigned int p = log2(digits * log(10.0) + log(M_PI)) - 1;
fprintf(stderr, "[mpf_gamma] p: %d\n", p);
fprintf(stderr, "[mpf_gamma] log2(digits): %d\n", (int)log2(digits));
/* The number of iterations needed to reduce the error, due to
* ignoring the C/B² term, to less than 10^-D is α2^p where α
* is the solution of:
*
* α log(α) = 3 + α α = exp(W(3e) - 1) 4.97
*
*/
size_t kmax = 4.97 * (1 << p);
fprintf(stderr, "[mpf_gamma] iterations: %ld\n", kmax);
// initialise variables
mpf_t A, B, a, b, stop, temp;
mpf_inits(A, B, a, b, stop, temp, NULL);
// A = a0 = -log(2^p) = -plog(2)
mpf_log2(a, digits);
mpf_mul_ui(a, a, p);
mpf_neg(a, a);
mpf_set(A, a);
// B = b0 = 1
mpf_set_si(b, 1);
mpf_set_si(B, 1);
for(size_t k = 1; k <= kmax; k++) {
// bk = bk-1 (n/k)^2
mpf_mul_2exp(b, b, 2*p);
mpf_div_ui(b, b, k);
mpf_div_ui(b, b, k);
// ak = ak-1 (n/k)^2
mpf_mul_2exp(a, a, 2*p);
mpf_div_ui(a, a, k);
mpf_div_ui(a, a, k);
// ak = ak - bk/k
mpf_div_ui(temp, b, k);
mpf_add(a, a, temp);
// A += ak, B += bk
mpf_add(A, A, a);
mpf_add(B, B, b);
}
// return A/B
mpf_div(rop, A, B);
// free memory
mpf_clears(A, B, a, b, temp, NULL);
}
int main(int argc, char** argv) {
/* if no argument is given, show the usage */
if (argc != 2) {
fprintf(stderr, "usage: %s D\n", argv[0]);
fprintf(stderr, "Computes γ up to D decimal places.\n");
return EXIT_FAILURE;
}
/* Compute the required precision, ie. the number
* of bits of the mantissa. This can be found from:
*
* 10^d = 2^b b = dlog2(10)
*/
size_t digits = atol(argv[1]);
size_t prec = digits * log2(10);
fprintf(stderr, "[main] precision: %gbit\n", (double)prec);
/* Set the default precision. This affects the mantissa
* size of all mpf_t variables initialised from now on.
*/
mpf_set_default_prec(prec + 64);
mpf_t y; mpf_init(y);
mpf_gamma(y, digits);
// again, trick to avoid rounding
gmp_printf("%.*Ff\b \n", digits+1, y);
mpf_clear(y);
return EXIT_SUCCESS;
}