48 lines
1.2 KiB
C
48 lines
1.2 KiB
C
|
#include <stdlib.h>
|
||
|
#include <gsl/gsl_rstat.h>
|
||
|
#include <gsl/gsl_statistics_double.h>
|
||
|
|
||
|
#include "bootstrap.h"
|
||
|
|
||
|
|
||
|
/* Computes an approximation to the asymptotic median
|
||
|
* and its standard deviation by bootstrapping (ie
|
||
|
* repeated resampling) the original `sample`, `boots`
|
||
|
* times.
|
||
|
*
|
||
|
* The functions returns an `uncert` pair of mean and
|
||
|
* stdev of the medians computed on each sample.
|
||
|
*/
|
||
|
uncert bootstrap_median(
|
||
|
const gsl_rng *r,
|
||
|
double *sample, size_t n,
|
||
|
int boots) {
|
||
|
|
||
|
/* We use a running statistics to not
|
||
|
* store the full resampled array.
|
||
|
*/
|
||
|
gsl_rstat_workspace* w = gsl_rstat_alloc();
|
||
|
|
||
|
double *values = calloc(boots, sizeof(double));
|
||
|
|
||
|
for (size_t i = 0; i < boots; i++) {
|
||
|
/* The sampling is simply done by generating
|
||
|
* an array index uniformely in [0, n-1].
|
||
|
*/
|
||
|
for (size_t j = 0; j < n; j++) {
|
||
|
size_t choice = gsl_rng_uniform_int(r, n);
|
||
|
gsl_rstat_add(sample[choice], w);
|
||
|
}
|
||
|
values[i] = gsl_rstat_median(w);
|
||
|
}
|
||
|
|
||
|
/* Compute mean and stdev of the medians
|
||
|
* of each newly bootstrapped sample.
|
||
|
*/
|
||
|
uncert median;
|
||
|
median.n = gsl_stats_mean(values, 1, boots);
|
||
|
median.s = gsl_stats_sd(values, 1, boots);
|
||
|
|
||
|
return median;
|
||
|
}
|