analistica/ex-4/main.c

210 lines
5.3 KiB
C
Raw Normal View History

#include "lib.h"
2020-04-23 23:56:53 +02:00
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_min.h>
#include <gsl/gsl_deriv.h>
2020-04-23 23:56:53 +02:00
// Process CLI arguments.
//
int parser(size_t *N, size_t *n, double *p_max, char argc, char **argv)
{
2020-04-23 23:56:53 +02:00
for (size_t i = 1; i < argc; i++)
{
if (!strcmp(argv[i], "-n")) *N = atol(argv[++i]);
else if (!strcmp(argv[i], "-b")) *n = atol(argv[++i]);
else if (!strcmp(argv[i], "-p")) *p_max = atof(argv[++i]);
2020-04-23 23:56:53 +02:00
else
{
fprintf(stderr, "Usage: %s -[hnbp]\n", argv[0]);
2020-04-23 23:56:53 +02:00
fprintf(stderr, "\t-h\tShow this message.\n");
fprintf(stderr, "\t-n N\tThe number of events to generate. (default: 50000)\n");
fprintf(stderr, "\t-b N\tThe number of bins of the histogram. (default: 50)\n");
fprintf(stderr, "\t-p PMAX\tThe maximum value of momentum. (default: 10)\n");
return 0;
2020-04-23 23:56:53 +02:00
}
}
return 1;
}
int main(int argc, char **argv)
{
// Set default options.
//
size_t N = 50000; // number of events.
size_t n = 50; // number of bins.
double p_max = 10; // maximum value of momentum module.
int res = parser(&N, &n, &p_max, argc, argv);
if (res == 1)
{
printf("\nGenerating histogram with:\n"
"%ld points\n"
"%ld bins\n"
"p_max = %.3f\n\n", N, n, p_max);
}
else return EXIT_FAILURE;
// printf("step: \t%.5f\n", step);
2020-04-23 23:56:53 +02:00
// Initialize an RNG.
//
gsl_rng_env_setup();
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
// Generate the angle θ uniformly distributed on a sphere using the
// inverse transform:
//
// θ = acos(1 - 2X)
//
// where X is a random uniform variable in [0,1), and the module p of
// the vector:
//
// p² = p_v² + p_h²
//
// uniformly distributed between 0 and p_max. The two components are
// then computed as:
//
// p_v = p⋅cos(θ)
// p_h = p⋅sin(θ)
//
// The histogram is updated this way.
2020-04-23 23:56:53 +02:00
// The j-th bin where p_h goes in is given by:
//
// step = p_max / n
// j = floor(p_h / step)
//
// Thus an histogram was created and a structure containing the number of
// entries in each bin and the sum of |p_v| in each of them is created and
// filled while generating the events (struct bin).
2020-04-23 23:56:53 +02:00
//
struct bin *histo = calloc(n, sizeof(struct bin));
// Some useful variables.
//
double step = p_max / n;
struct bin *b;
double theta;
double p;
double p_v;
double p_h;
size_t j;
for (size_t i = 0; i < N; i++)
{
// Generate the event.
//
theta = acos(1 - 2*gsl_rng_uniform(r));
p = p_max * gsl_rng_uniform(r);
// Compute the components.
//
p_v = p * cos(theta);
p_h = p * sin(theta);
// Update the histogram.
//
j = floor(p_h / step);
b = &histo[j];
b -> amo++;
b -> sum += fabs(p_v);
2020-04-23 23:56:53 +02:00
}
// Compute the mean value of each bin and print it to stodut
// together with other useful things to make the histogram.
//
// printf("bins: \t%ld\n", n);
// printf("step: \t%.5f\n", step);
2020-04-23 23:56:53 +02:00
for (size_t i = 0; i < n; i++)
{
histo[i].sum = histo[i].sum / histo[i].amo; // Average P_v
//printf("\n%.5f", histo[i].sum);
2020-04-23 23:56:53 +02:00
};
// Compare the histigram with the expected function:
//
// x * log(p_max/x)/arctan(sqrt(p_max^2/x^2 - 1))
//
// using the χ² test.
//
struct parameters params;
params.histo = histo;
params.n = n;
params.step = step;
gsl_function func;
func.function = &chi2;
func.params = &params;
double min_p = 5;
double max_p = 15;
// Initialize minimization.
//
double x = 10;
int max_iter = 100;
double prec = 1e-7;
int status = GSL_CONTINUE;
const gsl_min_fminimizer_type *T = gsl_min_fminimizer_brent;
gsl_min_fminimizer *s = gsl_min_fminimizer_alloc(T);
gsl_min_fminimizer_set(s, &func, x, min_p, max_p);
// Minimization.
//
for (int iter = 0; status == GSL_CONTINUE && iter < max_iter; iter++)
{
status = gsl_min_fminimizer_iterate(s);
x = gsl_min_fminimizer_x_minimum(s);
min_p = gsl_min_fminimizer_x_lower(s);
max_p = gsl_min_fminimizer_x_upper(s);
status = gsl_min_test_interval(min_p, max_p, 0, prec);
}
2020-04-23 23:56:53 +02:00
double result = x;
double res_chi = chi2(result, &params);
printf("Results:\n");
printf("χ² = %.3f\n", res_chi);
printf("p_max = %.3f\n", result);
// Compute the second derivative of χ² in its minimum for the result error.
//
// p_max = α
//
// (Ei - Oi)²
// χ² = Σi ----------
// Ei
//
// / Oi² \
// ∂αχ² = Σi | 1 - --- | ∂αE
// \ Ei² /
//
// / Oi² / Oi² \ \
// ∂²αχ² = Σi | (∂αE)² 2 --- + ∂²αE | 1 - --- | |
// \ Ei³ \ Ei² / /
//
double expecto, A, B;
double error = 0;
for (size_t i = 0; i < n; i++)
{
x = (i + 0.5) * step;
expecto = expected(x, result);
A = 2 * pow(exp1d(x, result) * histo[i].sum / expecto, 2);
B = exp2d(x, result) * (1 - pow((histo[i].sum / expecto), 2));
error = error + A + B;
};
error = 1/error;
printf("ΔP_max = %.3f\n\n", error);
// Free memory.
//
gsl_min_fminimizer_free(s);
2020-04-23 23:56:53 +02:00
gsl_rng_free(r);
free(histo);
return EXIT_SUCCESS;
}