analistica/slides/sections/5.md

82 lines
1.3 KiB
Markdown
Raw Normal View History

2020-06-07 14:32:03 +02:00
# MC simulations
## In summary
-----------------------------------------------------
Landau Moyal
----------------- ----------------- -----------------
median $m_L\ex$ $m_M\ex (μ, σ)$
mode $\mu_L\ex$ $\mu_M\ex (μ)$
FWHM $w_L\ex$ $w_M\ex (σ)$
-----------------------------------------------------
2020-06-07 19:59:07 +02:00
## Moyal parameters
2020-06-07 14:32:03 +02:00
A $M(x)$ similar to $L(x)$ can be found by imposing:
\vspace{15pt}
- equal mode
$$
\mu_M\ex = \mu_L\ex \approx 0.22278298...
$$
. . .
- equal width
$$
w_M\ex = w_L\ex = \sigma \cdot a
$$
$$
\implies \sigma_M \approx 1.1191486
$$
2020-06-07 19:59:07 +02:00
## Moyal parameters
2020-06-07 14:32:03 +02:00
:::: {.columns}
::: {.column width=50%}
![](images/both-pdf-bef.pdf)
:::
::: {.column width=50%}
![](images/both-pdf-aft.pdf)
:::
::::
2020-06-07 19:59:07 +02:00
## Moyal parameters
2020-06-07 14:32:03 +02:00
This leads to more different medians:
\begin{align*}
m_M = 0.787... \thus &m_M = 0.658... \\
&m_L = 1.355...
\end{align*}
2020-06-07 19:59:07 +02:00
## Results compatibility
2020-06-07 14:32:03 +02:00
2020-06-07 19:59:07 +02:00
Comparing results:
$$
p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with
t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}}
$$
- $x\ex$ and $x\ob$ are the expected and observed values
- $\sigma_e$ and $\sigma_o$ are their absolute errors
. . .
At 95% confidence level, the values are compatible if:
$$
p > 0.05
$$