2020-06-07 14:32:03 +02:00
|
|
|
|
# MC simulations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## In summary
|
|
|
|
|
|
|
|
|
|
-----------------------------------------------------
|
|
|
|
|
Landau Moyal
|
|
|
|
|
----------------- ----------------- -----------------
|
|
|
|
|
median $m_L\ex$ $m_M\ex (μ, σ)$
|
|
|
|
|
|
|
|
|
|
mode $\mu_L\ex$ $\mu_M\ex (μ)$
|
|
|
|
|
|
|
|
|
|
FWHM $w_L\ex$ $w_M\ex (σ)$
|
|
|
|
|
-----------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
2020-06-07 19:59:07 +02:00
|
|
|
|
## Moyal parameters
|
2020-06-07 14:32:03 +02:00
|
|
|
|
|
|
|
|
|
A $M(x)$ similar to $L(x)$ can be found by imposing:
|
|
|
|
|
|
|
|
|
|
\vspace{15pt}
|
|
|
|
|
|
|
|
|
|
- equal mode
|
|
|
|
|
$$
|
|
|
|
|
\mu_M\ex = \mu_L\ex \approx −0.22278298...
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
|
|
|
|
- equal width
|
|
|
|
|
$$
|
|
|
|
|
w_M\ex = w_L\ex = \sigma \cdot a
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\implies \sigma_M \approx 1.1191486
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
2020-06-07 19:59:07 +02:00
|
|
|
|
## Moyal parameters
|
2020-06-07 14:32:03 +02:00
|
|
|
|
|
|
|
|
|
:::: {.columns}
|
|
|
|
|
::: {.column width=50%}
|
|
|
|
|
![](images/both-pdf-bef.pdf)
|
|
|
|
|
:::
|
|
|
|
|
|
|
|
|
|
::: {.column width=50%}
|
|
|
|
|
![](images/both-pdf-aft.pdf)
|
|
|
|
|
:::
|
|
|
|
|
::::
|
|
|
|
|
|
|
|
|
|
|
2020-06-07 19:59:07 +02:00
|
|
|
|
## Moyal parameters
|
2020-06-07 14:32:03 +02:00
|
|
|
|
|
|
|
|
|
This leads to more different medians:
|
|
|
|
|
|
|
|
|
|
\begin{align*}
|
|
|
|
|
m_M = 0.787... \thus &m_M = 0.658... \\
|
|
|
|
|
&m_L = 1.355...
|
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
|
|
|
2020-06-07 19:59:07 +02:00
|
|
|
|
## Results compatibility
|
2020-06-07 14:32:03 +02:00
|
|
|
|
|
2020-06-07 19:59:07 +02:00
|
|
|
|
Comparing results:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
p = 1 - \text{erf} \left( \frac{t}{\sqrt{2}} \right)\ \with
|
|
|
|
|
t = \frac{|x\ex - x\ob|}{\sqrt{\sigma\ex^2 + \sigma\ob^2}}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
- $x\ex$ and $x\ob$ are the expected and observed values
|
|
|
|
|
- $\sigma_e$ and $\sigma_o$ are their absolute errors
|
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
|
|
|
|
At 95% confidence level, the values are compatible if:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
p > 0.05
|
|
|
|
|
$$
|