analistica/ex-6/main.c

234 lines
7.1 KiB
C
Raw Normal View History

2020-03-06 02:24:32 +01:00
#include <math.h>
#include <string.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sf.h>
#include "fft.h"
#include "rl.h"
/* Program options */
struct options {
int convolved;
int deconvolved;
int original;
size_t num_events;
size_t bins;
double sigma;
size_t rounds;
const char* mode;
double noise;
};
/* Intensity function parameters */
struct param {
double a; // aperture radius
double k; // wavenumber
double e; // wave amplitude
double l; // screen distance
};
/* Intensity of the EM field at a large distance
* from a circular aperture diffraction of a plane
* wave.
*
* The intensity is given as a function of θ,
2020-03-25 19:51:50 +01:00
* the diffraction angle. All the other physical
* parameters are controlled by the structure `param`.
2020-03-06 02:24:32 +01:00
*
* See Fraunhöfer diffraction on "Hect - Optics" for
* a derivation of the formula.
*/
double intensity(double theta, struct param p) {
double x = p.k * p.a * sin(theta);
double R = p.l / cos(theta);
/* The intensity function has an eliminable
* discontinuoty at the origin, which must
* be handled separately.
*/
if (fabs(x) < 1e-15) {
return 0.5 * pow(p.e/R * M_PI * pow(p.a, 2), 2);
}
double y = 2*M_PI*pow(p.a, 2) * gsl_sf_bessel_J1(x) / x;
return 0.5 * pow(p.e * y/R, 2);
}
/* `gaussian_for(hist, sigma)` generates a histogram
* with the same bin width of `hist` but smaller,
* with a gaussian PDF with μ at the central bin
* and σ equal to `sigma`.
*/
gsl_histogram* gaussian_for(gsl_histogram *hist, double sigma) {
/* Set the size to 6% of the histogram.
* Always choose n even to correctly center the
* gaussian in the middle.
*/
size_t n = ((double) hist->n * 6) / 100;
n = n % 2 ? n+1 : n;
/* Calculate the (single) bin width assuming
* the ranges are uniformely spaced
*/
double min, max;
gsl_histogram_get_range(hist, 0, &min, &max);
double dx = max - min;
gsl_histogram *res = gsl_histogram_alloc(n);
gsl_histogram_set_ranges_uniform(res, 0, dx * n);
/* The histogram will be such that
2020-03-25 19:51:50 +01:00
* the maximum falls in the central bin.
2020-03-06 02:24:32 +01:00
*/
long int offset = res->n/2;
for (long int i = 0; i < (long int)res->n; i++)
res->bin[i] = gsl_ran_gaussian_pdf(
((double)(i - offset) + 0.5) * dx, sigma * dx);
return res;
}
/* Convolves two histograms while keeping the
* original bin edges. This is a simple wrapper
* function around `gsl_vector_convolve`.
*/
gsl_histogram* histogram_convolve(gsl_histogram *a, gsl_histogram *b) {
gsl_histogram *res = gsl_histogram_calloc(a->n + b->n - 1);
/* Set the same edges as `a`*/
double max = gsl_histogram_max(a);
double min = gsl_histogram_min(a);
gsl_histogram_set_ranges_uniform(res, min, max);
/* Create vector views for everybody */
gsl_vector_view va = gsl_vector_view_array(a->bin, a->n);
gsl_vector_view vb = gsl_vector_view_array(b->bin, b->n);
gsl_vector_view vres = gsl_vector_view_array(res->bin, res->n);
gsl_vector_convolve(&va.vector, &vb.vector, &vres.vector);
return res;
}
int main(int argc, char **argv) {
struct options opts;
/* Set default options */
opts.convolved = 0;
opts.deconvolved = 0;
opts.original = 1;
opts.num_events = 50000;
opts.bins = 150;
opts.sigma = 0.8;
opts.rounds = 3;
opts.mode = "fft";
opts.noise = 0;
/* Process CLI arguments */
for (int i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-c")) opts.convolved = 1;
else if (!strcmp(argv[i], "-d")) opts.deconvolved = 1;
else if (!strcmp(argv[i], "-o")) opts.original = 1;
else if (!strcmp(argv[i], "-e")) opts.num_events = atol(argv[++i]);
else if (!strcmp(argv[i], "-b")) opts.bins = atol(argv[++i]);
else if (!strcmp(argv[i], "-s")) opts.sigma = atof(argv[++i]);
else if (!strcmp(argv[i], "-r")) opts.rounds = atol(argv[++i]);
else if (!strcmp(argv[i], "-m")) opts.mode = argv[++i];
else if (!strcmp(argv[i], "-n")) opts.noise = atof(argv[++i]);
else {
fprintf(stderr, "Usage: %s -[cdoebsh]\n", argv[0]);
fprintf(stderr, "\t-h\t\tShow this message.\n");
fprintf(stderr, "\t-c\t\tPrint the convolved histogram to stdout.\n");
fprintf(stderr, "\t-d\t\tAttempt and print the deconvolved histogram.\n");
fprintf(stderr, "\t-o\t\tPrint the original histogram to stdout.\n");
fprintf(stderr, "\t-e N\t\tThe number of events.\n");
fprintf(stderr, "\t-b N\t\tThe number of θ bins.\n");
fprintf(stderr, "\t-s SIGMA\tThe sigma of gaussian kernel.\n");
fprintf(stderr, "\t-r N\t\tThe number of RL deconvolution rounds.\n");
2020-03-29 20:36:38 +02:00
fprintf(stderr, "\t-m MODE\t\tThe deconvolution mode: 'fft' or 'rl'.\n");
2020-03-06 02:24:32 +01:00
fprintf(stderr, "\t-n MU\t\tThe mean (μ) of Poisson noise to add to the convolution.\n");
return EXIT_FAILURE;
}
}
/* Initialize an RNG. */
gsl_rng_env_setup();
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
gsl_histogram* hist = gsl_histogram_alloc(opts.bins);
gsl_histogram_set_ranges_uniform(hist, 0, M_PI/2);
double theta;
struct param p = { 0.01, 0.0001, 1e4, 1 };
/* Sample events following the intensity
* of a circular aperture diffraction I(θ)
* while producing a histogram.
*/
fputs("# event sampling\n", stderr);
fprintf(stderr, "max itensity: %.2f\n", intensity(0, p));
fprintf(stderr, "1. generating %ld events...", opts.num_events);
for (size_t i = 0; i < opts.num_events; i++){
do {
theta = acos(1 - gsl_rng_uniform(r));
} while(intensity(0, p) * gsl_rng_uniform(r) > intensity(theta, p));
gsl_histogram_increment(hist, theta);
}
fputs("done\n", stderr);
/* Generate the gaussian kernel, convolve the
* sample histogram with it and try to deconvolve it.
*/
fputs("\n# convolution\n", stderr);
fputs("1. generating gaussian kernel...", stderr);
gsl_histogram *kernel = gaussian_for(hist, opts.sigma);
fputs("done\n", stderr);
fputs("2. convolving...", stderr);
gsl_histogram *conv = histogram_convolve(hist, kernel);
fputs("done\n", stderr);
/* Add Poisson noise with μ=opts.noise to
* the convolution.
*/
if (opts.noise > 0) {
fputs("2.1 adding poisson noise...", stderr);
for (size_t i = 0; i < conv->n; i++)
conv->bin[i] += gsl_ran_poisson(r, opts.noise);
fputs("done\n", stderr);
}
fprintf(stderr, "3. %s deconvolution...", opts.mode);
gsl_histogram *clean;
if (!strcmp(opts.mode, "fft"))
clean = fft_deconvolve(conv, kernel);
else if (!strcmp(opts.mode, "rl"))
clean = rl_deconvolve(conv, kernel, opts.rounds);
else {
fputs("\n\nerror: invalid mode. select either 'fft' or 'rl'\n", stderr);
return EXIT_FAILURE;
}
fputs("done\n", stderr);
/* Print the selected histogram*/
fputs("\n# histogram \n", stderr);
gsl_histogram *showing;
if (opts.convolved) showing = conv;
else if (opts.deconvolved) showing = clean;
else if (opts.original) showing = hist;
gsl_histogram_fprintf(stdout, showing, "%g", "%g");
// free memory
gsl_rng_free(r);
gsl_histogram_free(hist);
gsl_histogram_free(kernel);
gsl_histogram_free(conv);
gsl_histogram_free(clean);
return EXIT_SUCCESS;
}