analistica/slides/sections/7.md

89 lines
1.5 KiB
Markdown
Raw Permalink Normal View History

2020-06-10 16:23:33 +02:00
# MC simulations
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
## In summary
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
-----------------------------------------------------
Landau Moyal
----------------- ----------------- -----------------
median $m_L\ex$ $m_M\ex (μ, σ)$
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
mode $\mu_L\ex$ $\mu_M\ex (μ)$
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
FWHM $w_L\ex$ $w_M\ex (σ)$
-----------------------------------------------------
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
## Moyal parameters
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
A $M(x)$ similar to $L(x)$ can be found by imposing:
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
\vspace{15pt}
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
- equal mode
$$
2020-06-12 14:31:08 +02:00
\mu_M\ex = \mu_L\ex \thus \mu \approx 0.22278298...
2020-06-10 16:23:33 +02:00
$$
2020-06-08 23:44:51 +02:00
. . .
2020-06-10 16:23:33 +02:00
- equal width
$$
2020-06-12 14:31:08 +02:00
w_M\ex = w_L\ex = \sigma \cdot a \thus \sigma \approx 1.1191486...
2020-06-08 23:44:51 +02:00
$$
2020-06-10 16:23:33 +02:00
## Moyal parameters
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
:::: {.columns}
::: {.column width=50%}
![](images/both-pdf-bef.pdf)
:::
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
::: {.column width=50%}
![](images/both-pdf-aft.pdf)
:::
::::
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
## Moyal parameters
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
This leads to more different medians:
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
\begin{align*}
m_M = 0.787... \thus &m_M = 0.658... \\
&m_L = 1.355...
\end{align*}
2020-06-08 23:44:51 +02:00
2020-06-11 18:30:30 +02:00
## Landau Sample
2020-06-08 23:44:51 +02:00
2020-06-11 18:30:30 +02:00
Sample N random points following $L(x)$
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
$$
2020-06-11 18:30:30 +02:00
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
2020-06-10 16:23:33 +02:00
$$
2020-06-08 23:44:51 +02:00
. . .
2020-06-11 18:30:30 +02:00
gsl_ran_Landau(gsl_rng)
## Moyal sample
Sample N random points following $M_{\mu \sigma}(x)$
2020-06-08 23:44:51 +02:00
2020-06-10 16:23:33 +02:00
$$
2020-06-11 18:30:30 +02:00
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
2020-06-10 16:23:33 +02:00
$$
2020-06-11 18:30:30 +02:00
. . .
reverse sampling
- sampling $y$ uniformly in [0, 1] $\hence x = Q_M(y)$