analistica/ex-6/test.c

224 lines
7.6 KiB
C
Raw Permalink Normal View History

#include <math.h>
#include <string.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_statistics_double.h>
#include "common.h"
#include "fft.h"
#include "rl.h"
#include "dist.h"
/* Program options */
struct options {
size_t num_events;
size_t num_exps;
size_t bins;
double sigma;
size_t rounds;
const char* mode;
double noise;
};
int show_help(char **argv) {
2020-05-13 01:15:30 +02:00
fprintf(stderr, "Usage: %s -[hexbsrn]\n", argv[0]);
fprintf(stderr, " -h\t\tShow this message.\n");
fprintf(stderr, " -e N\t\tThe number of events. (default: 50000)\n");
2020-05-13 01:15:30 +02:00
fprintf(stderr, " -x N\t\tThe number of experiments to run. (default: 1000)\n");
fprintf(stderr, " -b N\t\tThe number of θ bins. (default: 150)\n");
fprintf(stderr, " -s SIGMA\tThe sigma of gaussian kernel. "
"(default: 0.8)\n");
fprintf(stderr, " -r N\t\tThe number of RL deconvolution rounds."
"(default: 3)\n");
fprintf(stderr, " -n SIGMA\tThe σ of the gaussian noise to add to "
"the convolution. (default: 0)\n");
return EXIT_SUCCESS;
}
/* Performs an experiment consisting in
*
2020-05-21 09:51:36 +02:00
* 1. Measuring the distribution I(θ) sampling from
* an RNG;
* 2. Convolving the I(θ) sample with a kernel
* to simulate the instrumentation response;
* 3. Applying a gaussian noise with σ=opts.noise
* 4. Deconvolving the result with both the
* Richardson-Lucy (RL) algorithm and the Fourier
* transform (FFT) method;
2020-05-13 01:20:51 +02:00
* 5. Computing the Earth Mover's Distance (EMD) between
* the deconvolution results and the original,
* uncorrupted sample.
*
* The function returns a pair of the FFT and RL
* distances, in this order.
*/
2020-05-18 00:32:32 +02:00
double *experiment(
struct options opts,
gsl_rng *r,
gsl_histogram *kernel) {
struct param p = { 0.01, 0.0001, 1e4, 1 };
/* Sample events following the intensity
* of a circular aperture diffraction I(θ)
* while producing a histogram.
*/
gsl_histogram* hist = gsl_histogram_alloc(opts.bins);
gsl_histogram_set_ranges_uniform(hist, 0, M_PI/2);
for (size_t i = 0; i < opts.num_events; i++){
double theta;
do {
// uniform sphere polar angle
theta = acos(1 - gsl_rng_uniform(r));
} while(intensity(0, p) * gsl_rng_uniform(r) > intensity(theta, p));
gsl_histogram_increment(hist, theta);
}
/* Convolve the hisogram with the kernel */
gsl_histogram *conv = histogram_convolve(hist, kernel);
/* Add gaussian noise with σ=opts.noise */
if (opts.noise > 0) {
for (size_t i = 0; i < conv->n; i++)
conv->bin[i] += conv->bin[i] * gsl_ran_gaussian(r, opts.noise);
}
/* Deconvolve the histogram with both methods: RL and FFT.
* The FFT is used as reference for the distance.
*/
gsl_histogram *fft_clean = fft_deconvolve(conv, kernel);
gsl_histogram *rl_clean = rl_deconvolve(conv, kernel, opts.rounds);
/* Compute the earth mover's distances from the original
* histogram and store add each one to the respective
* distance histogram.
*/
2020-05-18 00:32:32 +02:00
static double dist[3];
dist[0] = emd_between(hist, fft_clean);
dist[1] = emd_between(hist, rl_clean);
dist[2] = emd_between(hist, conv);
// free memory
gsl_histogram_free(hist);
gsl_histogram_free(conv);
gsl_histogram_free(fft_clean);
gsl_histogram_free(rl_clean);
return dist;
}
int main(int argc, char **argv) {
struct options opts;
/* Set default options */
opts.num_events = 50000;
opts.num_exps = 1000;
opts.bins = 150;
opts.sigma = 0.8;
opts.rounds = 3;
opts.mode = "fft";
opts.noise = 0;
/* Process CLI arguments */
for (int i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-e")) opts.num_events = atol(argv[++i]);
else if (!strcmp(argv[i], "-x")) opts.num_exps = atol(argv[++i]);
else if (!strcmp(argv[i], "-b")) opts.bins = atol(argv[++i]);
else if (!strcmp(argv[i], "-s")) opts.sigma = atof(argv[++i]);
else if (!strcmp(argv[i], "-r")) opts.rounds = atol(argv[++i]);
else if (!strcmp(argv[i], "-n")) opts.noise = atof(argv[++i]);
else return show_help(argv);
}
/* Initialize an RNG. */
gsl_rng_env_setup();
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
/* Generate the gaussian kernel */
gsl_histogram *kernel = gaussian_kernel(opts.bins, opts.sigma);
/* Performs experiments and record the deconvolution
2020-05-13 01:20:51 +02:00
* EMD distances to the original sample.
*/
2020-05-18 00:32:32 +02:00
double* fft_dist = calloc(opts.num_exps, sizeof(double));
double* rl_dist = calloc(opts.num_exps, sizeof(double));
double* conv_dist = calloc(opts.num_exps, sizeof(double));
for (size_t i = 0; i < opts.num_exps; i++) {
2020-05-18 00:32:32 +02:00
double *dist = experiment(opts, r, kernel);
fft_dist[i] = dist[0];
rl_dist[i] = dist[1];
conv_dist[i] = dist[2];
}
2020-05-13 01:20:51 +02:00
/* Compute some statistics of the EMD */
// 1 is the array stride.
double fft_mean = gsl_stats_mean(fft_dist, 1, opts.num_exps);
double fft_stdev = gsl_stats_sd(fft_dist, 1, opts.num_exps);
double fft_skew = gsl_stats_skew_m_sd(fft_dist, 1, opts.num_exps, fft_mean, fft_stdev);
double fft_min, fft_max; gsl_stats_minmax(&fft_min, &fft_max, fft_dist, 1, opts.num_exps);
double rl_mean = gsl_stats_mean(rl_dist, 1, opts.num_exps);
double rl_stdev = gsl_stats_sd(rl_dist, 1, opts.num_exps);
double rl_skew = gsl_stats_skew_m_sd(rl_dist, 1, opts.num_exps, rl_mean, rl_stdev);
double rl_min, rl_max; gsl_stats_minmax(&rl_min, &rl_max, rl_dist, 1, opts.num_exps);
2020-05-13 01:20:51 +02:00
double conv_mean = gsl_stats_mean(conv_dist, 1, opts.num_exps);
double conv_stdev = gsl_stats_sd(conv_dist, 1, opts.num_exps);
double conv_skew = gsl_stats_skew_m_sd(conv_dist, 1, opts.num_exps, conv_mean, conv_stdev);
double conv_min, conv_max; gsl_stats_minmax(&conv_min, &conv_max, conv_dist, 1, opts.num_exps);
2020-05-18 00:32:32 +02:00
/* Create EDM distance histograms.
* Since the distance depends wildly on the noise we can't
* set a fixed range and therefore use the above values.
*/
2020-05-18 00:32:32 +02:00
gsl_histogram *fft_hist = gsl_histogram_alloc(sqrt(opts.num_exps));
gsl_histogram *rl_hist = gsl_histogram_alloc(sqrt(opts.num_exps));
gsl_histogram *conv_hist = gsl_histogram_alloc(sqrt(opts.num_exps));
gsl_histogram_set_ranges_uniform( fft_hist, fft_min, fft_max);
gsl_histogram_set_ranges_uniform( rl_hist, rl_min, rl_max);
gsl_histogram_set_ranges_uniform(conv_hist, conv_min, conv_max);
for (size_t i = 0; i < opts.num_exps; i++) {
2020-05-18 00:32:32 +02:00
gsl_histogram_increment( fft_hist, fft_dist[i]);
gsl_histogram_increment( rl_hist, rl_dist[i]);
gsl_histogram_increment(conv_hist, conv_dist[i]);
}
// print results to stderr
2020-05-13 01:20:51 +02:00
fprintf(stderr, "# EMD distance\n\n");
fprintf(stderr, "## FFT deconvolution\n");
fprintf(stderr, "- mean: %.2e\n"
"- stdev: %.1e\n"
"- skew: %.2f\n", fft_mean, fft_stdev, fft_skew);
fprintf(stderr, "\n## RL deconvolution\n");
fprintf(stderr, "- mean: %.2e\n"
"- stdev: %.1e\n"
"- skew: %.2f\n", rl_mean, rl_stdev, rl_skew);
2020-05-18 00:32:32 +02:00
fprintf(stderr, "\n## convolution\n");
fprintf(stderr, "- mean: %.2e\n"
"- stdev: %.1e\n"
"- skew: %.2f\n", conv_mean, conv_stdev, conv_skew);
// print histograms to stdout
2020-05-13 01:20:51 +02:00
fprintf(stderr, "\n# EMD histogram\n");
fprintf(stdout, "%d\n", (int)sqrt(opts.num_exps));
2020-05-18 00:32:32 +02:00
gsl_histogram_fprintf(stdout, fft_hist, "%.10g", "%.10g");
gsl_histogram_fprintf(stdout, rl_hist, "%.10g", "%.10g");
gsl_histogram_fprintf(stdout, conv_hist, "%.10g", "%.10g");
// free memory
gsl_rng_free(r);
gsl_histogram_free(kernel);
2020-05-18 00:32:32 +02:00
gsl_histogram_free( fft_hist);
gsl_histogram_free( rl_hist);
gsl_histogram_free(conv_hist);
free( fft_dist);
free( rl_dist);
free(conv_dist);
return EXIT_SUCCESS;
}