analistica/ex-1/plots/misc.py

167 lines
5.3 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python
from matplotlib import pyplot as plt
import numpy as np
import argparse
import sys
# -i → agrs.show → open plot in interactive mode
# -s → args.save → save plot
#
# -n → agrs.note → do the Landau plot with the notes
# -b → args.both → do the Landau-Moyal plot
# -m → args.area → do the Landau median plot
# -gm → args.gamo → do the Gaussian-Moyal compare plot
# -gl → args.gala → do the Gaussian-Landau compare plot
# -c → args.cauchy → do the Cauchy PDF plot
# Moyal PDF
def moyal(x, μ, σ):
N = (1)/(np.sqrt(2 * np.pi) * σ)
return N * np.exp(- 0.5 * ((x - μ)/σ + np.exp(- (x - μ)/σ)))
# Cauchy PDF
def cauchy(x):
return 1/(np.pi*(1 + x**2))
# Gauss PDF
def gauss(x, μ, σ):
N = (1)/(np.sqrt(2 * np.pi) * σ)
return N * np.exp(- 0.5 * ((x - μ)/σ)**2)
def main(args):
# prepare figure
if args.show:
plt.figure()
elif args.save:
plt.rcParams['font.size'] = 8
if (args.both or args.area or args.cauchy):
plt.figure(figsize=(3, 2))
elif (args.gamo or args.gala):
plt.figure(figsize=(2.5, 2))
elif args.note:
plt.figure(figsize=(5, 3))
if args.note:
# useful coordinates
y_min = -0.0086 # y min axes
y_max = 0.1895 # y max axes
me = -0.22 # mode
f_me = 0.1806 # f(mode)
h_f_me = f_me/2 # falf f(mode)
x_m = -1.5867 # x₋
x_p = 2.4330 # x₊
# draw the lines
plt.plot([-10, me], [f_me, f_me], color='gray')
plt.plot([me, me], [f_me, y_min], color='gray')
plt.plot([-10, x_p], [h_f_me, h_f_me], color='gray')
plt.plot([x_m, x_m], [y_min, h_f_me], color='gray')
plt.plot([x_p, x_p], [y_min, h_f_me], color='gray')
# draw the notes
s = 0.012
S = 0.2
plt.annotate('$f(m_e)$', [-10 + S, f_me - s])
plt.annotate('$f(m_e)/2$', [-10 + S, h_f_me - s])
plt.annotate('$x_-$', [x_m + S, y_min + s/2])
plt.annotate('$x_+$', [x_p + S, y_min + s/2])
plt.annotate('$m_e$', [me + S, y_min + s/2])
# prepare plot
plt.title('Landau distribution', loc='right')
plt.xlim(-10, 10)
plt.ylim(y_min, y_max)
if (args.both):
plt.ylim(-0.015, 0.265)
# draw Landau plot
if not args.gamo:
x, y = np.loadtxt(sys.stdin, unpack=True)
plt.plot(x, y, color='#92182b', label='Landau')
# Color the area under the function
if args.area:
median = 1.3557804
x0 = np.argmin(abs(median - x))
plt.fill_between(x[:x0], y[:x0], color='#ff99a8')
plt.fill_between(x[x0:], y[x0:], color='#b28e94')
# do Cauchy plot
if args.cauchy:
x = np.arange(-10, 10, 0.01)
plt.plot(x, cauchy(x), color='gray', label='Cauchy')
plt.legend()
μ = -0.22278298
σ = 1.1191486
# do Moyal plot
if (args.both or args.gamo):
x = np.arange(-10, 10, 0.01)
plt.plot(x, moyal(x, μ, σ), color='gray', label='Moyal')
plt.legend()
# do Gaussian plot
if (args.gamo or args.gala):
x = np.arange(-10, 10, 0.01)
if args.gala:
a = 1.97
if args.gamo:
a = 1.65
plt.plot(x, gauss(x, μ, a*σ), color='#cfb017', label='Gauss')
plt.legend()
# save figure
plt.tight_layout()
if args.show:
plt.show()
elif args.save:
if args.note:
plt.savefig('notes/images/1-notes.pdf')
if args.both:
plt.savefig('slides/images/both-pdf.pdf', transparent=True)
if args.area:
plt.savefig('slides/images/median.pdf', transparent=True)
if args.cauchy:
2020-06-12 16:59:17 +02:00
plt.savefig('slides/images/cauchy-pdf.pdf', transparent=True)
if args.gamo:
plt.savefig('slides/images/gamo-pdf.pdf')
if args.gala:
plt.savefig('slides/images/gala-pdf.pdf')
if __name__ == '__main__':
# Parse data
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--show',
action='store_true', default=False,
help='show the plots')
parser.add_argument('-s', '--save',
action='store_true', default=False,
help='save the plots')
parser.add_argument('-b', '--both',
action='store_true', default=False,
help='do the both plot')
parser.add_argument('-n', '--note',
action='store_true', default=False,
help='do the note plot')
parser.add_argument('-a', '--area',
action='store_true', default=False,
help='do the area plot')
parser.add_argument('-c', '--cauchy',
action='store_true', default=False,
help='do the cauchy plot')
parser.add_argument('-gl', '--gala',
action='store_true', default=False,
help='do the gaussian-landau plot')
parser.add_argument('-gm', '--gamo',
action='store_true', default=False,
help='do the gaussian-moyal plot')
args = parser.parse_args()
main(args)